Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Elife ; 112022 07 08.
Article in English | MEDLINE | ID: covidwho-1934563

ABSTRACT

The definition of correlates of protection is critical for the development of next-generation SARS-CoV-2 vaccine platforms. Here, we propose a model-based approach for identifying mechanistic correlates of protection based on mathematical modelling of viral dynamics and data mining of immunological markers. The application to three different studies in non-human primates evaluating SARS-CoV-2 vaccines based on CD40-targeting, two-component spike nanoparticle and mRNA 1273 identifies and quantifies two main mechanisms that are a decrease of rate of cell infection and an increase in clearance of infected cells. Inhibition of RBD binding to ACE2 appears to be a robust mechanistic correlate of protection across the three vaccine platforms although not capturing the whole biological vaccine effect. The model shows that RBD/ACE2 binding inhibition represents a strong mechanism of protection which required significant reduction in blocking potency to effectively compromise the control of viral replication.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Primates/metabolism , Spike Glycoprotein, Coronavirus/metabolism
2.
Front Immunol ; 13: 855230, 2022.
Article in English | MEDLINE | ID: covidwho-1862604

ABSTRACT

Most children are less severely affected by coronavirus-induced disease 2019 (COVID-19) than adults, and thus more difficult to study progressively. Here, we provide a neonatal nonhuman primate (NHP) deep analysis of early immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in blood and mucosal tissues. In addition, we provide a comparison with SARS-CoV-2-infected adult NHP. Infection of the neonate resulted in a mild disease compared with adult NHPs that develop, in most cases, moderate lung lesions. In concomitance with the viral RNA load increase, we observed the development of an early innate response in the blood, as demonstrated by RNA sequencing, flow cytometry, and cytokine longitudinal data analyses. This response included the presence of an antiviral type-I IFN gene signature, a persistent and lasting NKT cell population, a balanced peripheral and mucosal IFN-γ/IL-10 cytokine response, and an increase in B cells that was accompanied with anti-SARS-CoV-2 antibody response. Viral kinetics and immune responses coincided with changes in the microbiota profile composition in the pharyngeal and rectal mucosae. In the mother, viral RNA loads were close to the quantification limit, despite the very close contact with SARS-CoV-2-exposed neonate. This pilot study demonstrates that neonatal NHPs are a relevant model for pediatric SARS-CoV-2 infection, permitting insights into the early steps of anti-SARS-CoV-2 immune responses in infants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Child , Cytokines , Humans , Infant, Newborn , Pilot Projects , Primates/genetics , RNA, Viral
3.
Mol Ther ; 30(9): 2952-2967, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-1860155

ABSTRACT

The COVID-19 pandemic continues to have devastating consequences on health and economy, even after the approval of safe and effective vaccines. Waning immunity, the emergence of variants of concern, breakthrough infections, and lack of global vaccine access and acceptance perpetuate the epidemic. Here, we demonstrate that a single injection of an adenoassociated virus (AAV)-based COVID-19 vaccine elicits at least 17-month-long neutralizing antibody responses in non-human primates at levels that were previously shown to protect from viral challenge. To improve the scalability of this durable vaccine candidate, we further optimized the vector design for greater potency at a reduced dose in mice and non-human primates. Finally, we show that the platform can be rapidly adapted to other variants of concern to robustly maintain immunogenicity and protect from challenge. In summary, we demonstrate this class of AAV can provide durable immunogenicity, provide protection at dose that is low and scalable, and be adapted readily to novel emerging vaccine antigens thus may provide a potent tool in the ongoing fight against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Dependovirus/genetics , Humans , Macaca , Mice , Pandemics/prevention & control , SARS-CoV-2/genetics
4.
Molecular therapy : the journal of the American Society of Gene Therapy ; 2022.
Article in English | EuropePMC | ID: covidwho-1837975

ABSTRACT

The COVID19 pandemic continues to have devastating consequences on health and economy, even after the approval of safe and effective vaccines. Waning immunity, the emergence of variants of concern, breakthrough infections, and lack of global vaccine access and acceptance perpetuate the epidemic. Here, we demonstrate that a single injection of an AAV-based COVID19 vaccine elicits at least 17-month-long neutralizing antibody responses in non-human primates at levels that were previously shown to protect from viral challenge. To improve the scalability of this durable vaccine candidate, we further optimized the vector design for greater potency at a reduced dose in mice and nonhuman primates. Finally, we show that the platform can be rapidly adapted to other variants of concern to robustly maintain immunogenicity and protect from challenge. In summary, we demonstrate this class of AAV can provide durable immunogenicity, provide protection at dose that is low and scalable, and be adapted readily to novel emerging vaccine antigens thus may provide potent tool in the ongoing fight against SARS-CoV-2. Graphical This manuscript characterizes and optimizes an AAV-based vaccine platform for several COVID-19 development candidates: durability of humoral response at high level for over 20 months, the ability to reduce the dose and protect from challenge in NHP and the versatility and robustness of the platform across different variant of concern antigens.

5.
Nanoscale ; 13(40): 16885-16899, 2021 Oct 21.
Article in English | MEDLINE | ID: covidwho-1413378

ABSTRACT

The present research study reports the development of plastic antibodies based on Molecularly Imprinted Polymers (MIPs) capable of selectively binding a portion of the novel coronavirus SARS-CoV-2 spike protein. Indeed, molecular imprinting represents a very promising and attractive technology for the synthesis of MIPs characterized by specific recognition abilities for a target molecule. Given these characteristics, MIPs can be considered tailor-made synthetic antibodies obtained by a templating process. After in silico analysis, imprinted nanoparticles were synthesized by inverse microemulsion polymerization and their ability to prevent the interaction between ACE2 and the receptor-binding domain of SARS-CoV-2 was investigated. Of relevance, the developed synthetic antibodies are capable of significantly inhibiting virus replication in Vero cell culture, suggesting their potential application in the treatment, prevention and diagnosis of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Molecularly Imprinted Polymers , Humans , Plastics , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
6.
Nat Commun ; 12(1): 5215, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1392854

ABSTRACT

Achieving sufficient worldwide vaccination coverage against SARS-CoV-2 will require additional approaches to currently approved viral vector and mRNA vaccines. Subunit vaccines may have distinct advantages when immunizing vulnerable individuals, children and pregnant women. Here, we present a new generation of subunit vaccines targeting viral antigens to CD40-expressing antigen-presenting cells. We demonstrate that targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to CD40 (αCD40.RBD) induces significant levels of specific T and B cells, with long-term memory phenotypes, in a humanized mouse model. Additionally, we demonstrate that a single dose of the αCD40.RBD vaccine, injected without adjuvant, is sufficient to boost a rapid increase in neutralizing antibodies in convalescent non-human primates (NHPs) exposed six months previously to SARS-CoV-2. Vaccine-elicited antibodies cross-neutralize different SARS-CoV-2 variants, including D614G, B1.1.7 and to a lesser extent B1.351. Such vaccination significantly improves protection against a new high-dose virulent challenge versus that in non-vaccinated convalescent animals.


Subject(s)
CD40 Antigens/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antigen-Presenting Cells/immunology , B-Lymphocytes/immunology , Convalescence , Humans , Macaca , Mice , Mutation , Protein Domains , Reinfection/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , Vaccination , Vaccines, Subunit/immunology
7.
Cell Host Microbe ; 29(9): 1437-1453.e8, 2021 09 08.
Article in English | MEDLINE | ID: covidwho-1347535

ABSTRACT

The SARS-CoV-2 pandemic has affected more than 185 million people worldwide resulting in over 4 million deaths. To contain the pandemic, there is a continued need for safe vaccines that provide durable protection at low and scalable doses and can be deployed easily. Here, AAVCOVID-1, an adeno-associated viral (AAV), spike-gene-based vaccine candidate demonstrates potent immunogenicity in mouse and non-human primates following a single injection and confers complete protection from SARS-CoV-2 challenge in macaques. Peak neutralizing antibody titers are sustained at 1 year and complemented by functional memory T cell responses. The AAVCOVID vector has no relevant pre-existing immunity in humans and does not elicit cross-reactivity to common AAVs used in gene therapy. Vector genome persistence and expression wanes following injection. The single low-dose requirement, high-yield manufacturability, and 1-month stability for storage at room temperature may make this technology well suited to support effective immunization campaigns for emerging pathogens on a global scale.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Dependovirus/genetics , Dependovirus/metabolism , Female , Humans , Immunogenicity, Vaccine/immunology , Immunologic Memory/immunology , Macaca fascicularis , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/immunology , Transgenes/genetics , Vaccination/methods , Viral Load/immunology
SELECTION OF CITATIONS
SEARCH DETAIL